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Summary 

Synchronizer 

SWS 8Tap 
SWS 4Tap 

MSWS 4Tap 
ELGS 8Tap 
ELGS 4Tap 

MSWS 8Tap 

GZCD 

This work details a study of robust synchronization schemes suitable for satellite to mobile 
aeronautical applications. A new scheme, the Modified Sliding Window Synchronizer (MSWS), is 
devised and compared with existing schemes, including the traditional Early-Late Gate 
Synchronizer (ELGS), the Gardner Zero-Crossing Detector (GZCD), and the Sliding Window 
Synchronizer (SWS). Performance of the synchronization schemes is evaluated by a set of metrics 
that indicate performance in digital communications systems. The metrics are convergence time, 
mean square phase error (or root mean-square phase error), lowest S N R  for locking, initial 
frequency offset performance, midstream frequency offset performance, and system complexity. 

The performance of the synchronizers is evaluated by means of Matlab simulation models. 
A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting 
of a Quadrature Phase Shift Keying modulator, an additive white Gaussian noise channel, and a 
demodulator front end. Simulation results show that the MSWS provides the most robust 
performance at the cost of system complexity. The GZCD provides a good tradeoff between 
robustness and system complexity for communication systems that require high symbol rates or 
low overall system costs. The ELGS has a high system complexity despite its average 
performance. Overall, the SWS, originally designed for multi-carrier systems, performs very 
poorly in single-carrier communications systems. The following table, which is later Table 5.1 in 
Section 5, provides a ranking of each of the synchronization schemes in terms of the metrics set 
forth in Section 4.1. Details of comparison are given in Section 5. 

Robust Synchronization Performance Table 

Convergence Root Mean-Square Lowest Initial Midstream Frequency Complexity 
(Number of Phase Error' SNR for Frequency Frequency Offset @ Lowest 
Symbols) Locking2 Offset Offset SNR 

350 0.0261T 3dB f50 pprn f50 pprn N/A 7 

10 0.01 22T OdB f100ppm f50ppm f100 pprn 4 
50 0.01 22T 3dB f100ppm f100ppm f100 pprn 3 
50 0.041 2T 4dB f100ppm f100ppm f100 pprn 2 
50 0.0144T 3dB f100ppm f100ppm f100 pprn 1 

350 0.01 14T 3dB NIA NIA N/A 5 
10 0.0033T -3dB f100 pprn f100 pprn f100 pprn 6 

'T=symbol period, 'En,, 
Based on the results presented in the table, it is safe to say that the most robust 

synchronization scheme examined in this work is the high-sample-rate Modified Sliding Window 
Synchronizer. A close second is its low-sample-rate cousin. The tradeoff between complexity and 
lowest mean-square phase error determines the rankings of the Gardner Zero-Crossing Detector 
and both versions of the Early-Late Gate Synchronizer. The least robust models are the high and 
low-sample-rate Sliding Window Synchronizers. Consequently, the recommended replacement 
synchronizer for NASA's Advanced Air Transportation Technologies mobile aeronautical 
communications system is the high-sample-rate Modified Sliding Window Synchronizer. By 
incorporating this synchronizer into their system, NASA can be assured that their system will be 
operational in extremely adverse conditions. The quick convergence time of the MSWS should 
allow the use of high-level protocols. However, if NASA feels that reduced system complexity is 
the most important aspect of their replacement synchronizer, the Gardner Zero-Crossing Detector 
would be the best choice. 
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1. Introduction 

Robust synchronization is a crucial technique for a modem to function properly. The 
modem of the AATT mobile Ku-Band earth station developed by NASA Glenn Research Center is 
an EB200 spread spectrum modem manufactured by L-3 Corporation [ 11. Field test results show 
that the AATT mobile Ku-Band earth station has experienced communication outages during tests, 
when the mobile unit passes under highway overpasses or shadowed by other obstacles [2]. One of 
the possible causes of the outages is the loss of symbol timing synchronization. This project is to 
investigate robust symbol timing synchronization techniques and to recommend the suitable one 
for use in the mobile satellite communications. 

The Sliding Window Synchronizer (SWS) as proposed by Arafat Al-Dweik [3] shows 
resilience to low signal to noise ratio (SNR). We first focused our effort on the analysis and 
simulation of this scheme. Further research into this synchronizer showed that this scheme is best 
suitable for a multi-carrier system, like OFDM system. For single-carrier communication systems, 
some modifications are needed. As a result, a Modified Sliding Window Synchronizer (MSWS) 
was proposed. To judge the merit of the proposed MSWS, besides the original SWS, two other 
popular symbol synchronizers were selected for comparison. First, the popular Early-Late Gate 
Synchronizer (ELGS) [7] was chosen to serve as a baseline against which to compare the others 
over the course of our evaluation. Second, the Gardner’s Zero-Crossing Detector (GZCD) as 
proposed by F. Gardner was also chosen for comparison due to its high efficiency [4]. Each of 
these synchronization techniques falls into the non-data-aided, ad hoc category. While this was not 
intentional, the selection is appropriate given that low S N R  capabilities are common to many non- 
data-aided synchronizers and that most synchronizers in use are of the ad hoc variety. In-depth 
description and analysis of each of these techniques is contained in Section 2 

Performance of the synchronization schemes is evaluated by a set of metrics that indicate 
performance in digital communications systems. The metrics are convergence time, mean-square 
phase error, lowest S N R  for locking, initial frequency offset performance, midstream frequency 
offset performance, and system complexity. 

The performance of the synchronizers is evaluated by means of Matlab simulation models. 
A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting 
of a QPSK modulator, an AWGN channel, and a demodulator front end. The Matlab models of the 
robust synchronization candidates are derived from their published descriptions in the case of the 
SWS [3] and GZCD [4]. The simulation model of the ELGS is derived from the description in 
reference [7]. The simulation model of the MSWS is newly proposed. 

Simulation results show that the MSWS provides the most robust performance at the cost 
of system complexity. The GZCD provides a good tradeoff between robustness and system 
complexity for communication systems that require high symbol rates or low overall system costs. 
The ELGS has a high system complexity despite its average performance. Overall, the SWS, 
originally designed for multi-carrier systems, performs very poorly in single-carrier 
communications systems. 

This report is based on the material from a published conference paper [6] and the master’s 
thesis of graduate assistant, Stanley Pinchak, under the supervision of this principal investigator 
[SI. This report consists of five sections: Introduction, SWS and Modified SWS, ELGS and 
GZCD, Performance Evaluation, Conclusions and Recommendations. 
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2. Sliding Window Synchronizer and Modified Sliding Window 
Synchronizer 

The Sliding Window Synchronizer is an ad hoc technique first proposed by Arafat Al- 
Dweik in 2000 for use in multi-carrier Orthogonal Frequency Division Multiplexing (OFDM) 
communications systems [3]. Published results showed very good performance even in 
environments with a S N R  as low as 0 dB. However, adapting the SWS to the single carrier 
communication system proved to be dif€icult. Initial results showed rather poor performance, and 
various combinations of changes to the loop filter and gains did not significantly improve this. 
Despite these poor results, in the interest of furthering the understanding of the SWS, the original 
scheme is described and analyzed. The high-sample-rate required by the original scheme 
encouraged the creation of a low-sample-rate version. The original scheme proposed the use of 
eight samples per symbol, whereas the low-sample-rate technique operates on four samples per 
symbol. The performance of the low-sample-rate SWS in simulations could not be improved 
despite repeated tuning. 

2.1 Sliding Window Synchronizer (SWS) 

The original Sliding Window Synchronizer is shown in Figure 2.1. The first step of the 
SWS synchronization process begins with a baseband symbol stream. The incoming baseband 
signal is sampled in both the In-Phase (I) and Quadrature-Phase (Q) channels. The samplers are 
controlled by the voltage-controlled oscillator (VCO) or numeric controlled oscillator (NCO). 
These samplers operate at eight times the frequency of the incoming symbol rate. 

SWA 

I- 

Figure 2.1: Sliding Window Synchronizer Block Diagam 

Every sample time, the contents of each shift register are summed and the resulting 
summations are squared. Immediately, the two sum-squared magnitude values from the I and Q 
channels are added together and fed into a serial-to-parallel converter ( S F )  of width eight taps. 
The output of the S/p is sampled once per symbol period by a clock-divided version of the VCO or 
NCO. The outputs of the first and third taps of the S/p are then subtracted from the first and third 
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taps of S/P from the previous symbol. The two dif€erence signals are each fed into a sliding 
window averager (SWA) that is 128 taps long. The sum of the tap 3 SWA is subtracted from the 
sum of the tap 1 SWA and the result is sent to another SWA, which is also 128 taps long. 

of the integrator is used to control a VCO or NCO with a free-running frequency equal to eight 
times the incoming symbol rate. The output of the VCO or NCO is sent to a clock divider to create 
the symbol strobe signal. This symbol strobe is used to control the S/P and can be compared to the 
incoming symbol edge for the purposes of performance evaluation. 

The output of the dif€erence SWA is then sent to the loop filter and integrator. The output 

2.2 Modified Sliding Window Synchronizer (SWS) 

We have modified the structure and the algorithm proposed in [3], the block diagram is given 
in Figure 2.2. The operation of the MSWS is similar to that of SWS up to the output of the S/P 
block. The control algorithm of the synchronizer is modified as shown in the figure. Instead of 
comparing tap 1 and 3, a maximum tap selector is used. Details of this algorithm will be described 
later. r_ 1 Tap: ? 
Figure 2.2: Modified sliding window symbol synchronizer block diagam 

If we denote the output of the S/P in Figure 2.1 and 2.2 as W(n), where n is time index, 
W(n) is in effect a digital phase detector. The SWA computes the average of the W(n) over a 
sufficient time length to produce the phase detector characteristic W(L,K,a), where K is number of 
samples in the sliding window, L is the symbol timing offset (delay or advance) in number of 
samples between the sliding window and the incoming data symbol timing, a is the ratio of the 
correct sampling frequency over the local sampling frequency. The control algorithm computes 
three points on the phase detector characteristic and compares them to decide what control signal 
(+ or -) is to send to the VCO. 

Since control algorithm is based on it, in the following we will derive the phase detector 
char act eristic W( L,K, a). 

2.3. Sampled MPSK signals 

On the entire time axis, the I-channel and Q-channel components of an MPSK signal in 
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baseband can be written as 
rn 

Z(t) = I ,  p ( t  - kT) + n(t), - w < t < w 
k=-m 

m 

Q(t) = Qkp( t  - kT)  + n(t), --oo < t < -oo 
k=-m 

where Ik and Qk are the amplitude of the I-channel and Q-channel signal, respectively. p(t) is the 
pulse shape. Here we assume p(t) is a rectangular pulse in [ O,T] , where T is the symbol period. 
n(t) is the white Gaussian noise with two-sided power spectral density (PSD) of No/2. I k  and Qk are 
determined by the phase e k  of the signal in the kth period: 

where A is the amplitude of the MPSK signal. In the following, we set A=l without loss of 
I ,  = A c o s O k ,  Qk = A s i n @ ,  (1) 

generality. The phase 

the symbol; and 8, E 

expression for 8i is 

e k  is determined by log, M data bits represented by the modulated signal 

{ei }E" , where 8i are evenly spaced angles on the signal constellation. The 

( M  -4i+ 2 ) n  8. = , i=1,2 ,..., M 
2M 

When sampled, I(t) and Q(t) become I(nT,)=I(n) and Q(nT,)=Q(n), where T, is the sampling 
period. Now let us observe K samples in a sliding window of the length of the symbol period T. 
The outputs of the summers in Figure 2.1 are the sums of these K samples 

K-1 K-l 

S, (n) = I (n  - k )  3 S, ( n )  = Q(n - k )  
k=O k=n 

and the output of the adder is 
W(n)  = s; (n)  + s; (n)  

2.4. Phase Detector Characteristic (the W(L,K,a) curve) 

To derive the phase detector characteristic, we need to examine all possible cases in terms 
of the relationship between incoming data symbol clock, the local sampling clock and the symbol 
clock, ignoring the noise. To illustrate these different cases, we use 8PSK as an example (Figure 
2.3), where samples of all 8 possible 8PSK symbols are shown, with 8 samples per symbol. The 
local symbol clock is derived from the sampling clock by frequency divider. The sliding window 
length is defined as the number of samples in the window. The sliding window duration thus varies 
with the sampling frequency or indirectly with the clock frequency. 

Case 1: the sampling frequency is correct and symbol timing is perfect (Figure 2.3, case 1). 
In this case, the K samples have exactly the same amplitude, Acose, and A sine,, in I- and Q- 
channel, respectively. Then 

S,(n)=KAcos8,, S,(n)=KAsinO, 

W ( n )  = K2A2 
This is the maximum value of W(n), and it is proportional to the baseband symbol energy (the 
baseband symbol energy is TA2/2). 

Case 2: the sampling frequency is correct (thus the symbol clock frequency is the same as 
the data symbol rate), but the symbol timing is delayed by L samples. In this case, the sliding the 
window covers K-L samples of the current symbol and L samples of the next symbol (Figure 2.3, 
case 2). 
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Case 3: the sampling frequency is correct, but the symbol timing is advanced by L samples. 
In this case, sliding the window covers K-L samples of the current symbol and L samples of the 
previous symbol (Figure 2.3, case 3). 

Case 4: the sampling frequency is lower than the correct frequency (thus local symbol 
clock frequency is lower than the data symbol rate). In this case, the number of samples in the 
sliding window is still K since the clock frequency is derived from the sampling frequency by 
dividing it by K. However, these K samples are not from only one symbol. They may be from two 
or more symbols depending on how low the clock frequency is in comparison with the data symbol 
rate. Usually the clock frequency is not too far away from the data symbol rate. Thus a reasonable 
assumption is that the clock frequency is at least 1/2 of the symbol rate. Thus, these K symbols are 
at most from 3 symbols. 

Case 5: the sampling frequency is higher than the correct frequency (thus symbol clock 
frequency is higher than the data symbol rate). In this case, the number of samples in the sliding 
window is still K. The samples could be from one symbol or at most two symbols. 

In both case 4 and case 5, the clock phase is in general different from the data symbol- 
timing phase. Their starting edges may coincide occasionally, however the probability for them to 
be exactly the same is zero. Even if their starting edges indeed coincide, their ending edges will be 
at different times since their frequencies are different. If the local clock is delayed by L samples, 
the case is called Case 4d or 5d. If the local clock is advanced by L samples, the case is called Case 
4a or 5a. Now we try to investigate the behavior of phase detector. 

2.4.1. Same Frequency, Different Phase 

In cases 2 and 3, the local clock has the same frequency but different phase with respect to 
the data symbol timing. It will be seen shortly that W(L, K) has the same behavior in these two 
cases. If the clock frequency is not exactly the same as that of the data symbol timing but the 
difference in clock period is within 1/2 sample period, it is easy to see that cases 2 and 3 still apply 
to the situation. 

Figure 2.3: Illustration of 5 cases using 8PSK signals as an example. 
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We start the discussion with case 2. Assume there is a delay of L samples in symbol, the 
sum is 

where i and j indicate current data symbol i and the next data symbol j. It is easy to see that the 
value of W(n, L, K, I, j) does not really depend on time index n, provided that data are a stationary, 
ergodic random process, which is usually the case. Rather it is a function of the symbol pattern, 
consisting of the current data symbol i and the next data symbol j, in addition to L and K. There 
are L samples of symbol j and K-L samples of symbol i. Since for MPSK, samples within a 
symbol have the same amplitude, we can write 

(3) 
where time index n in I- and Q-channel signals are suppressed. In fact this formula also can be 
used for QAM since its samples within a symbol also have the same amplitude. 

For MPSK, there are M2 two-symbol patterns. If we index the symbols as 1, 2, ... M, the 
two-symbol patterns’ indexes form an MxM matrix as 

W (  L, K ,  i, j )  = [ LZ + ( K  - L)ZiI2 + [ LQi + ( K  - L)QiI2 

[ l l  12 ... l M 1  

. 2! I I .  . 
21 22 ... 

[ L l  M 2  .f. MM : I  
Inspecting Figure 2.3, it can be easily verified that the value of W(L, K, i, j) for pattern ij in case 2 
for a delay of L is equal to that of pattern ji in case 3 for an advance of L. It can be seen from the 
matrix that for a pattern ij, there is always a symmetrical pattern ji. Thus the statistical average of 
W(L, K, i, j) over all possible patterns is the same for case 2 and case 3. It is therefore suffice to 
study the behavior of case 2. Thus the average of W(L, K, i, j) is only a function of L and K 
denoted as W(L, K). 

With the aid of a computer program (MathCAD), the values of W(L, K, i, j) and W(L,K) 
can be calculated. It turns out that the values of W(L, K, i, j) is the same as that of W(L, K, j, i), 
that is, the matrix of W(L, K, i, j) is symmetrical about the diagonal. This can be proved as 
follows. 

Expanding (3) and using the fact that 
I2  +e’= 1 (5 )  

we have 

The above expression is invariant when indexes i and j are exchanged, thus the proof. Further, 
from above or (3), we can see that the values on the diagonal (i = j) are K2, which is the case that 
two adjacent symbols are the same so that W(L, K, i, j) is maximum regardless the value of delay 
L. 

Computer calculation also revealed that the values of W(L,K) for MPSK schemes are the 
same for any modulation order M, provided L and K are fiied. Analytically, this can be proved as 
follows. Using ( 5 )  in (4), 

W (L ,  K ,  i, j )  = L2 + ( K  - L)2 + 2L(K - L)(ZIZI + Q,Ql ) (6) 
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The sum in the last term can be evaluated using (1) and (2) as follows 
M M  M M  E E <rZri + Q , Q ~ )  = E E (cos eZ cos ei + sin eZ sin ei) 
1=I ;=l 1=I ;=l 

1=I ;=l 1=I ;=l 

In the above each sub-sum is equal to zero since the phases of the cosine terms in the sub-sum just 
completely match to all phases of the constellation points. (The above term is also first revealed by 
MathCAD as zero). Thus 

and 

M M  ccUJ, +Q,Q,) = O  
r=l ,=I 

W ( L ,  K )  = L2+(K -L)2 
which is only a function of L and K, regardless of modulation order M. It reaches maximum at 
L=O or L=K: 

maxW(L,K) = K' 
That is, it is the maximum when synchronism is reached. Figure 2.4 is the plots of (8). 

Note that we previously proved that W(L,K) of case 3 is the same as that of case 2. That is, the 
expression of W(L,K) in (7) can be used for case 2, where L is the delay of the sliding window, 
and for case 3, where L is the advance of the sliding window. 

W(L,IG) 
xxx 

2 4 6 E IO 12 14 1G 

L 

[a1 lbl 

Figure 2.4: Average squared sum W(L,K) for cases 2 and 3. (a) K=8, (b) K=16. Note that only 
points at integer L exist. 

2.4.2. Different Frequency and Phase 

In cases 4 and 5, the local clock has different frequency from the data symbol timing, 

In case 4, the local sampling frequency fl is lower than the correct frequency f, , or 
consequently the phases are different in general. 

equivalently, the sampling period T1 is longer than the correct sampling period T,. That is 
fi= f , la  or q = a T , ,  a21  
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where a is a positive number slightly greater than 1. Then, the window length, which is a period of 
the clock, is 

KT =aKTs 
In case 4d, the window is delayed by L samples with a new sampling period Tl (Figure 

2.5). We assume that LT + (a - l)KTs I Kq ,  . It means the sum of the extra window length and the 
delay is no larger than a correct symbol period; this is a reasonable assumption since we do not 
expect that the clock frequency is off too much. This leads to the relation between a and L as 

(9) 
L + K  

Part of the window length that covers the current data symbol (symbol i) is 
( K q  - L q )  = ( K - L u ) q  and that covers the next data symbol (symbol j) is 
KT - ( KTs - L T )  = ( K a  - K + La)T, . Thus the number of samples with T1 of the current symbol is 

where 1x1 indicates the integer floor of x. The above expression is true when sampling instant is 
in the first half of the sampling period, which is usually the case. Similarly, in the next symbol 
(symbol j), the number of samples is 

The total number of samples in the window is K, which should be and is indeed equal to MI+MJ. 

Using ( 5 )  and (7), the statistical average is found to be 
W ( L , K , a , i , j ) = [ M , Z i + M J Z j l z + [ M , Q i  + M J Q j l Z  (10) 

Symbol 
Boundary 

Slidingwindw \ 
I 

1 sampling instants 

~ 

Case 4d L = l ,  a=1.25 

Figure 2.5: Case 4d: the sampling frequency is lower than correct and the window is delayed by 
LT,. 
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1 M M  

M i=l j=1 

W ( L ,  K , u )  = T C C W ( L ,  K , u , ~ ,  j )  = M; + MJ' = 

The plots for K=8 and various a are shown in Figure 2.6. Some curves are completely or 
partially overlapped. For a fixed a the curves behave similar to case 2 and 3. Note that the 
condition given by (10) must be satisfied; so different curves for different a values terminated at 
different L values. There is one common feature; that is, the maximum is always at L=O. However, 
for certain a values (1.0,1.1,1.25,1.3), the maximum also appears at end of the curve; for others 
(1.05,1.15,1.2), the maximum appears only at the starting point (L=O). The ending point is not a 
maximum. 

W( L1,8,1 00) 
%H+ 
W(L3,8,1 10) 
++ + 
W(LS,8,1 20) 
B B O  

100 

80 

60 

40 

20 

O 0  1 2  3 4 5 6 7 E 
L1 ,U,U 

(3 

W(L2,8,1 05) 
M 
W ( U , S , l  15) 
+++ 
W(L8,8,1 25) 
B B O  

100 

80 

60 

40 

20 

0 1 2 3 4 5 6 7 8  
0 

Figure 2.6: Average W(L,K,a) for Case 4d: (a) a=1,1.1,1.2, (b) a=1.05,1.15,1.25. Note that only 
points at L equal to integers exist. The lines show the trend of change. 

In case 4a, the window is advanced by L q .  In the window, the number of the samples from the 
previous symbol is M ,  = L .  To calculate the number of the samples from the current symbol and 
next symbol, we must consider two situations. The first situation is that the remaining length of the 
window is entirely in the current symbol (Figure 2.7(a)). In this case, ( K - ~ ) a  I K , and the 
number of samples from the current symbol is M ,  = K - L ,  and there are no samples from the next 
symbol. The second case is that the remaining length of the window is still longer than a symbol 
length (Figure 2.7(b)). In this case, ( K - L ) ~ > K ,  the number of samples from the current symbol 
is 

and the number of samples from the 

[ M K Q k  + MlQil2 ,  i f (  K - L)u I K 

[ M K I k  +MI', + M , I f ] 2  + W ( L ,  K , u , i ,  j ,  k )  = 

( [ M K Q k + M l Q i + M J Q f 1 2 ,  i f ( K - L ) a > K  

Using (5) and (7) the statistical average is found to be 
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Figure 2.7: Case4a: the sampling frequency is lower than correct, and the window is advanced by 
LT'-I". (a) the window covers the current symbol and part of the previous symbol. (b) the 
window covers the current symbol and parts of the previous and next symbol 
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Figure 2.8: W(L,K,a) for Case 4a: (a) a=1,1.1,1.2, (b) a=1.05,1.15,1.25. Note that only points at 
L equal to integers exist. The lines show the trend of change. 

I LZ+(K-L) ' ,  g ( K - L ) a < K  

The plots are in Figure 2.8. 
In case 5, the sampling frequency is higher than the correct frequency. The window is 

shorter than a symbol period. We assume that the sampling period is rg = a q ,  a < 1 
In case 5d, the clock is delayed by LTi and the window could or could not cover the next 

symbol, depending on L (Figure 2.9). IfLT, I KT, - KT, or L I K l a  - K  , the window will not 
cover the next symbol, otherwise it will. When the window does not cover the next symbol (Figure 
2.9(a)), the number of samples of the current symbol is K. When the window covers the current 
symbol and next symbol (Figure 2.9(b)), the number of samples of the current symbol is 
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and the number of samples of the next symbol is 

Thus 
[KI,]2+[KQ]2, if L S K l a - K  

W ( L ,  K , ~ , i , j )  = [LKla -L+ 0.51 I, +LL+ K - K / u  +0.51Ijl2 + 
[LK l a  - L+ 0.51Q +LL + K - K l a  +O.5]Qjl2, if L > K l a  - K 

K 2 ,  i f L 5 K l a - K  

1 
Using ( 5 )  and (6), the statistical average is found as 

W ( L ,  K , a )  = 

{ ~ K l a - L + 0 . 5 ] 2 + ~ L + K - K l a + 0 . 5 ] 2 ,  if L > K I a - K  

The plots are in Figure 2.10 
I 
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I (a) Case 5 d  L=l, a=0.875 @) Case 5d L=2, a=0.875 

Figure 2.9: Case5d: the sampling frequency is higher than correct, and the window is delayed by 
LT,. (a) the window covers the current symbol only. (b) the window covers the current symbol 
and part of the next symbol. 
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Figure 2.10: W(L, K, a) for Case 5d: (a) a=1,0.9,0.8, (b) a=0.95,0.85,0.75. Only points at integer 
L exist. The lines show the trend of change. 
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When the clock is advanced by LTl (case 521, Figure 2.1 l), the window covers the previous symbol 
and the current symbol. The number of samples in the previous symbol is, and the number of 
samples in the current symbol is M I  = K - L . Thus 

sampling instants 

I Case 5a: L = l ,  a=O.S75 

Figure 2.11: Case5a: the sampling frequency is higher than correct, and the window is advanced 
by LT,. The window covers the current symbol and part of the previous symbol. 

20 

O n  
- u . 0 1 2 3 4 5 6 7 x  

0 L 'X 

Figure 2.12: W(L,K) for Case 5a: independent of value of a. Only points at L equal to integers 
exist. The lines show the trend of change. 

W ( L , K , a , i , k ) = [ L I ,  +(K-L)ZiI2 +[LQ, +(K-L)QiI2 
Using similar derivation as above, the statistical average is found as 

The plots are in Figure 2.12. 
W (  L, K ,  a )  = L2 + ( K  - (15) 

2.4.3 Phase Detector Characteristic Summary 
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The average signal expressions are summarized in Table 2.1, where fi and f, are the local VCO 
frequency and received data symbol rate, respectively. The amplitude of the data is assumed as 1. 

Table 2.1: W(L, K, a), L=delay or advance, K = number of correct clock period, a = f, / fE 
Case 
1 synchronized, 
fE =f, 
2 delay L, fE = f, 
3 advance L, fE = f, 
4d delay L, fE < f, 

4a advance L, fE < f, 

5d delay L, fE > f, 

5a advance L, fi > f, 

W(L, K, a) 
K 2  

Lz +(K-L)’ ,  L <  K 

Lz +(K-L)’ ,  L <  K 

1 
a 

L2+(K-L)2,  L2 K(1--) 

1 
a 

, L<K(1--) 

2 K 
a 

K ,  L S - - K  

K , L>--K 

L2+(K-L)’, L <  K 

Notes 

a > l  

a > l  

a < l  

2.5 Detailed Operation of the MSWS 

The Modified Sliding Window Synchronizer is shown in Figure 2.2. The operation of the 
Modified Sliding Window Synchronizer is similar to the original SWS up to and including the 
creation of the W(n) analogue curve at the output of the S / P .  The I and Q baseband signals are 
sampled at eight times the symbol rate and fed into shift registers with a length of eight taps. The 
samplers are controlled by a VCO or NCO. Figure 2.13 shows an example of the I and Q channels 
of the incoming symbol stream as well as the sampled points used by the MSWS. Figure 2.14 
shows the contents of the shift registers for the fist  eight sample periods. It can be seen that the 
samples enter the shift register at tap one and shift the previous contents upward by one tap. Note 
the upward movement of the samples in the shift register in the plots from left to right. Every 
sample time, the contents of each shift register are summed and the resulting summations are 
squared as seen in Figure 2.15. The two resulting values are added and immediately fed into a S / P .  
The S / P  has width of eight taps. The output of the S / P  is referred to as the W(n) curve. The W(n) 
curve for the fist six symbol periods can be observed in Figure 2.16. 
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Figure 2.13: MSWS Incoming Symbol Stream Sampling 
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Figure 2.14: MSWS Shift Register Contents for First Incoming Symbol 
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Figure 2.16: MSWS S/P Output vs. Symbol Period (PreW(L,K) curve or W(n)). 
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The S/P is followed by an SWA containing 32 taps. This SWA operates at the symbol rate. 
The SWA creates the long time average approximation of the W(L,K) curve. Figure 2.17 shows the 
development of the W(L,K) analogue curve at the output of the SWA over the first six symbol 
periods. The SWA is followed by a max tap selector, which selects the tap with the maximum 
magnitude. From the leftmost plot of Figure 2.17, it can be seen that tap 5 will be selected as the 
max tap. As a result, the output of the max tap selector will be the number five. The output of the 
max tap selector is used by the control algorithm in the creation of the control signal that is sent to 
the VCO or NCO. Additionally, it is used in the creation of the coarse adjustment signal. The 
control algorithm compares the output of the max tap selector to the previous output of the max tap 
selector and makes one of four decisions. These decisions are based on the difference between the 
current and previous outputs of the max tap selector. Table 2.2 shows the possible decisions and 
the resulting control signal generated. The control signal output is sent through a gain block and 
then to the VCO or NCO. The free running frequency of the VCO and NCO is equal to eight times 
the incoming symbol rate. The output of the VCO or NCO is sent to a clock divider to create the 
symbol-timing clock that controls the S/P. The symbol strobe output is a delayed version of the S/P 
control signal. The delay is determined by coarse adjustment signal created by the control 
algorithm. The operation of the Modified Sliding Window Synchronizer control algorithm is based 
on the same W(L,K) curve approximation as the original SWS. However, unlike the SWS 
technique, the length of the SWA is equal to 32 taps. The MSWS control algorithm operates on the 

MSWS W(L,K) Curve Development vs Symbol Period 

, I  

0 20 40 20 40 0 20 40 0 20 40 

Magnitude 

0 20 40 0 20 40 

Figure 2.17: MSWS w(L,,K) Analogue Curve Development 
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Current Max Tap Output Equals 
MT" 
N T ~  
PTC 

other 

Control Signal 
S WA(NT) -S  WA(PT) 
S WA(NT) -S  WA(PT) 
S WA(NT) -S  WA(PT) 

Perform Coarse Adiustment 

"MT is the previous output of the max tap selector 
bNT is the tap immediately following MT 
'PT is the tap immediately preceding MT 

Table 2.2: MSWS Decision Table 

whole W(L,K) analogue curve, as opposed to the two f i e d  taps involved in the SWS technique. 
From the entire curve, the tap with the greatest magnitude is selected and used to determine the 
fine adjustment signal as well as the coarse adjustment signal. 

The control algorithm has two main modes of operation. The fist  mode is called coarse 
acquisition that attempts to quickly reduce the phase error to within one tap. This coarse 
acquisition is based on adjusting the delay of the symbol strobe with respect to the incoming 
baseband symbol stream in steps of whole sample times. The amount of delay is directly related to 
the index of the maximum tap. Since the W(L,K) curve can be approximated after only one symbol 
transition there is a greater than 98% likelihood that the output strobe can be brought within one 
tap within approximately four symbol periods. However, in the simulation model we perform the 
coarse acquisition every symbol period for the fist  ten symbols, which ensures that we will have a 
symbol transition in 999,999 out of 1,000,000 simulation runs. The nature of coarse acquisition 
also ensures that the algorithm will lock at the maximum point on the W(L,K) analogue curve. 
Figure 2.18 shows the incoming symbol stream and the symbol strobe signal for the fist  ten 
symbol periods. Note that the symbol strobe does not have f i e d  intervals in the region of the 
second and third symbol periods. 

The second mode of operation is called f i e  adjustment and operates by adjusting the 
timing control output of the MSWS control algorithm. This, in turn, alters the output frequency of 
the VCO or NCO. The accumulated effects of the small frequency delta between the incoming 
symbol rate and the symbol-timing clock are used to drive the phase error to zero. When the 
frequency of the VCO or NCO is increased, the individual sample periods will be shorter and will 
have the cumulative effect of moving the symbol-timing clock earlier with respect to the incoming 
baseband symbol transitions. Decreasing the frequency of the VCO or NCO has the effect of 
lengthening the individual sample periods and has the cumulative effect of moving the symbol- 
timing clock later with respect to the incoming symbol transitions. Figure 2.19 shows the effect of 
adjusting the sampling rate. The symbol-timing clock used in the MSWS is the clock divided 
output of the VCO or NCO used to control the output of the S / P  and SWA. Note that it does not 
necessarily have the same phase as the symbol strobe output. The disjoint between the symbol 
timing clock and the symbol strobe output allows for the operation of the coarse acquisition mode 
without destroying the contents the W(L,K) analogue curve, which would require that the SWA be 
flushed. The operation of the low-sample-rate version of the MSWS is similar to the high-sample- 
rate version. However, the low-sample-rate version operates with a nominal VCO or NCO 
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frequency of four samples per symbol. Additionally, the incoming shift registers and the S/P are 
four taps wide. The SWA following the S/P is four taps wide, but has the same length, 32 taps, as 
the high-sample-rate version. The operation of the max tap selector and control algorithm is 
identical to the high-sample-rate version. The operation of the coarse acquisition and fine 
adjustment are the same in the low and high-sample-rate versions. 

-1 - 

2.6 Observation 

- 

Like the original Sliding Window Synchronizer algorithm, the fine adjustment technique of 
the Modified Sliding Window Synchronizer asymptotically oscillates the phase error to zero (see 
next Section). However, the use of the coarse acquisition technique allows the MSWS to quickly 
achieve a phase error of less than one tap. In the high-sample-rate version of the MSWS this equals 
a phase error that is less than 0.125 symbol periods. The phase error for the low-sample-rate 
modification is less than 0.25 symbol periods. When used with digital demodulators and square 
symbol pulses, the MSWS can achieve the theoretical performance of the demodulator within 
about four symbol periods. Non-square symbol pulse operation or other synchronization 
applications requiring less phase error will necessarily wait for the fine adjustment to achieve the 
required phase error. 

3. Synchronizers For Comparison 

3.1 The Early-Late Gate Synchronizer 

The Early-Late Gate Synchronizer compares the signal energies in an early gate and a late 
gate (Figure 3.1). If the symbol timing is correct, the dif€erence is zero; otherwise, the Werence is 
positive or negative. The polarity and the magnitude of the dif€erence signal indicated that whether 
the timing clock is earlier or late and how much is advanced or delayed, with respect to the 
received data pulses. This signal is used to control the VCO. 

I 

Early gate  

. I  

t = O  

Synchronized 

t = T  

Figure 3.1. Early-Late Gate Timing Illustration 

Data  pulse  
I ,  

j I  

Fi j I 
I 
I 
I 
I 
I 
I 

t = O  

I Late  gate  1 I 

t = T  

Da ta  is la te  by A 

The Early-Late Gate Synchronizer is a modification of the traditional analog ELGS [7] ,  
which operates on samples of the baseband symbol stream. The ELGS is presented as a baseline 
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technique. Its operation is rather simple and it is easily realizable in hardware. Like the SWS and 
MSWS both high and low-sample-rate models are possible. The Early-Late Gate Synchronizer is 
shown in Figure 3.2. The ELGS operates on either the I or Q channel of the baseband signal. The 
incoming baseband signal is sampled at eight times the incoming symbol rate. 

I 

a- I w 

Figure 3.2: Early-Late Gate Synchronizer Block Diagram 

These samples are then sent to a shift register of length eight taps. Samples enter at tap one 
and shift the previous contents further into the shift register. Once each symbol period, the contents 
of the shift register are summed twice. The first summation, called the early summation, sums all 
but the last tap of the shift register. The second summation, called the late summation, sums all but 
the first tap of the shift register. Each of these two summations is divided by the number of taps 
included in each summation. In this way, the early and late integrators of the analog ELGS are 
approximated in the digital ELGS. 

The operation of the ELGS is best understood by an example. Figure 3.3 shows the samples 
chosen for the early and late summations. In the plot, the circle-topped lines indicate the early 
summation samples and the square topped lines indicate the late summation samples. Figure 3.4 
shows a plot of the output of the early and late summations over the first six symbol periods. 
Comparing this to Figure 3.3, note that the summations are equal every time there is a consecutive 
symbol of the same phase. The early summation is subtracted from the late summation and the 
result is sent to the digital integrator and loop filter. The output of the loop filter is used to control 
the output of the VCO. The VCO is set to a free-running frequency of eight times the incoming 
symbol rate. The output of the VCO is the intermediate timing signal. This is used to control the 
samplers and is also sent to a clock divider to create the symbol strobe signal. The symbol strobe 
signal is used to control the summation of the delay lines and has the same frequency and phase as 
the incoming symbol data. Figure 3.5 shows the incoming baseband symbol stream and the symbol 
strobe created by the ELGS for the first six symbol periods. It should be obvious from the plot that 
the ELGS is unable to acquire phase lock over this small period of time. The low-sample-rate 

25 



version of the Early-Late Gate Synchronizer sets the free-running frequency of the VCO to four 
times the symbol frequency. It also decreases the length of the incoming delay line to four taps. 

1r 
Early and Late Summation Samples 
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OJ3 t I 
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Figure 3.3: ELGS Early and Late Summation Sampling Points 
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Figure 3.4: ELGS Summation Magnitude vs. Symbol Period 
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Figure 3.5: ELGS Symbol Strobe Output 

This means that the early sumation will be over the fist  three taps and the late summations will 
be over the last three taps. Additionally, the sumations will be divided by three instead of seven, 
as is the case in the high-sample-rate version. 

3.2 Gardner Zero-Crossing Detector 

The Gardner Zero-Crossing Detector was first proposed by F.M. Gardner as a simple 
timing error detector for BPSK and QPSK communications systems [4]. This scheme is an ad hoc 
technique that operates at two samples per symbol. There have been several proposed methods of 
improving the performance of the GZCD. This work, however, only investigates the original 
algorithm. 

error char act erist ic 
(16) 

which can be expressed as the subtraction of the current symbol strobe samples fiom the previous 
symbol strobe samples and the multiplication of the results by the sample occurring midway 
between the current and previous strobe samples and finally by the addition of the two I- and Q- 
channel results. Derivation of this expression is later given in Section 3.3. Since the GZCD 
samples at two times the symbol rate, the samples occurring midway between the symbol strobe 
samples should lie in the transition region if there is a transition between symbols. When timing 
error is zero, the midway sample should give an average value of zero. Timing error results in a 
nonzero sample whose magnitude depends on the amount of error. The midway sample does not 

The Gardner Zero-Crossing Detector operation is based on the following symbol timing 

( r )  = Y I  ( r  -1/2) Y I  ( r )  - Y ,  ( r  -1) I + Y Q  ( r  2) Y Q  ( r )  - Y Q  ( r  -1) I 
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provide enough information alone to control the synchronizer, as either slope is equally likely. In 
order to eliminate the ambiguity, the symbols strobe samples preceding and following the midway 
sample are examined. If there is no symbol transition, the strobe values will be the same, and their 
difference zero, so the midway sample is rejected. If there is a symbol transition, the strobe values 
will be different and the difference will provide the slope information and the midway sample will 
provide the timing error information. 

The Gardner Zero-Crossing Detector is shown in Figure 3.6. The incoming baseband signal 
is sampled in both the I and Q channels. The VCO, which controls the samplers, operates at two 
times the symbol rate. A plot of the incoming baseband signals and the sample points used by the 
GZCD is shown in Figure 3.7. The output of each of the samplers is sent to a shift register of 
length three taps. The shift registers are sampled once per symbol period by a sample and hold 
device ( S E I ) .  The output of the S/H contains the strobe samples of the current and previous symbol 
as well as the sample that lies midway between them. These are located at taps one, three, and two, 
respectively. For each channel, the previous strobe sample is subtracted from the current strobe 
sample. The result of this subtraction is then multiplied by the midway sample. The result from the 
I branch and the Q branch are added together and sent to the loop filter and integrator. The output 
of the loop filter and integrator is used to control the VCO. The output of VCO is sent to a clock 
divider that reduces the frequency from the sampling rate to the symbol rate. The output of this 
clock divider is the symbol strobe signal and is used to control the S/H. Figure 3.8 shows the 
incoming symbol stream and the symbol strobe created by the GZCD. 

Figure 3.6: Gardner Zero-Crossing Detector Block Diagram 
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Figure 3.7: Gardner Zero-Crossing Detector Incoming Symbol Stream Sampling 
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Figure 3.8: Gardner Zero-Crossing Detector Symbol Strobe Output 
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3.3 Derivation of symbol timing error characteristic of the GZCD (Eqn. 16): 

The Gardner Zero-Crossing Detector’s operation begins with a pair of baseband samples, 
y z  ( t )  and ye ( t )  from the I and Q channels. The GZCD operates on two samples per symbol 
period, T. As a result, the ideal samples of the rth symbol are expressed as follows. 

where rT is the sampling time occurring at the rth symbol’s strobe time and (r-1/2)T is the 
sampling time lying midway between the rth and (r - 1)th symbols’ strobe times. For practical 
systems, the synchronizer’s sampling points will delayed by time 2, resulting in the following 
samples for the rth symbol. 

y , ( rT)  3 3 yZ((r-1’2)T) 3 y Q ( ( r - 1 / 2 ) T )  

y,(rT+z) 9 y Q ( r T + z ) ,  y , ( ( r -1 /2 )T+z)  9 yQ( ( r -1 /2 )T+z)  
The delay difference signal, x, ( t )  , can be used to approximate a differentiator, which is 

often used in analog clock recovery techniques. 

If td is chosen to be T/2, it can be seen that the GZCD samples from either the I or Q channel can 
be used to create the delay difference signal. 

x, ( t )  = x(t)  - x(t - t , )  

Squaring the delay difference leads to the following equation. 

Sampling at t = rT +z and t = ( r  - 1/2)T +z gives two additional equations. 
X Z ( t )  = x2( t )  + x2(t  - T / 2 )  - 2x(t)x(t - T / 2 )  

E ( r )  = x, ‘ ( rT+z)  
L(r-1) = x , ( ( r - l / 2 ) T + z )  

E ( r )  = x2 (z + rT)  + x2 (z + ( r -  1/ 2)T) - 2.42 + rT)x(z  + ( r  - 1/ 2)T) 
L(r - 1) = x2 (z + ( r  - 1/ 2)T) + x2 (z + ( r  - 1)T) - 2.42 + ( r  - 1 /  2)T)x(z  + ( r  - 1)T) 

u,(r)  = L(r-1) -E(r )  

u, ( r )  = x2(z + ( r  - 1)T) - x2(z + rT)  + 2.42 + ( r  - 1/ 2)T){ x(z + rT) - x(z + ( r  - 1)T)j 

Note that L(r -1) utilizes the sample midway between the (r -1)th and rth symbol strobe samples. 
These equations are expanded as follows. 

The GZCD detector algorithm is defined as the following equation. 

Expanded and simplified, this leads to the following equation. 

The GZCD relies on the average over many samples of the detector algorithm for its operation. 
This allows for the elimination of the x2 terms as they do not contribute to the average output. The 
only output that they could produce would be due to noise, as they would cancel out completely in 
the absence of noise. This leads to the following detector algorithm. 

Expressed more compactly, it is. 

The final detector algorithm consists of adding the results of the detector algorithm from the I and 
Q channels. The GZCD generates one error sample ut(r) for each symbol. 

which is (16). For further information on the Gardner Zero-Crossing Detector please refer to [4]. 

u,(r)  = x(z + ( r  - 1/ 2)T) {x ( z  + rT)  - x(z + ( r  -1)T)j 

u, ( r )  = x( r - 1/ 2) { x( r )  - x( r - l)} 

( r )  = Y I  ( r  2) Y I  ( r )  - Y I  ( r  -1) I + Y Q  ( r  2) Y Q  ( r )  - Y Q  ( r  - 1) I 
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4. Synchronizers Performance Evaluation 

The robustness of each of the four synchronization schemes discussed in this work is 
evaluated by quantitative and qualitative methods. Methods for comparing these schemes are 
outlined in Section 4.1. A description of the methods of performance evaluation is provided in 
Section 4.1. A detailed examination of each synchronization scheme follows in Sections 4.3, 4.4, 
4.5 and 4.6 

4.1 Performance Metrics 

This section proposes and defines several performance metrics by which the robustness of a 
synchronization scheme may be quantitatively determined. These metrics are derived from actual 
engineering application requirements. The metrics are convergence time, mean-square phase error, 
lowest S N R  for locking, initial frequency offset performance, midstream frequency offset 
performance, and system complexity. Additionally, other pertinent advantages and disadvantages 
of each synchronizer will be examined. 

Convergence time is determined by the average number of symbols required for each 
synchronization scheme to reach a predetermined phase error. This value determines how long the 
communications receiver will be operating at an elevated symbol error rate (SER) when the system 
is first started and again in the event that resynchronization is required. In modern high bit-rate 
communication systems the dif€erences in this metric can determine whether higher-level protocols 
such as TCP/IP will suffer dramatic retransmission penalties in the event that resynchronization is 
required. 

Mean-square phase error is determined by the dif€erence between incoming symbol edges 
and the synchronizer's strobe signal when the synchronizer has reached the steady state. It is 
calculated by taking the average of the square of the dif€erence between the synchronizer's 
estimated symbol timing and the correct symbol timing, where the dif€erence is given in terms of 
fractions of a symbol period. In a digital communications system, a synchronization phase error 
results in the incorrect sampling of the incoming symbol. This, in turn, results in IS1 and as a 
result produces symbol errors even in the absence of noise [5] . Phase error results in a error floor 
in the SER vs. S N R  graph of the communications system. Figure 4.1 shows the effect of phase 
error on the SER performance of a QPSK communication system in AWGN [5]. BPSK-based 
communications systems show a similar error floor. 

The lowest SNR for locking is determined by operating each synchronizer over a range of 
noise levels. Starting from the highest SNR, the noise level is increased until the synchronizer is 
unable to obtain lock. The S N R  associated with this noise level is then called the lowest S N R  for 
locking. All S N R  values are given in terms of E n , .  The lowest S N R  for locking determines 
whether a synchronization scheme is suitable for a communication system with a given transmitter 
power and channel noise. This metric also determines the synchronizer's immunity to bursts of 
noise. 

Initial frequency ofSset perfomance indicates a synchronizer's capacity to handle a 
frequency difference between its own clock and the transmitter's clock at the beginning of a 
transmission. The typical frequency offset in communications systems is usually on the order of 
100 ppm . The nominal sampling rate of each synchronizer is varied over a range of frequency 
offsets, and the ability to obtain and to maintain lock is determined. Furthermore the mean-square 
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phase error of the simulations is a measure of the synchronizer's frequency offset performance 
after the synchronizer has reached the steady state. 

 IO-^ 

I o4 

10.' 
5 10 15 20 

Figure 4.1: Noise Floor Effect Due to Incorrect Sampling 

Midstream frequency ogset perfomance of a synchronizer indicates how well it adapts to a 
hequency offset between the synchronizer and transmitter clocks which may occur in the middle 
of a transmission. Frequency offsets on the order of 100 ppm are typical in modern 
communications systems utilizing crystal oscillators. The midstream frequency offsets are 
performed after the synchronizers have achieved lock. The ability of the synchronizer to maintain 
lock despite the offset will be measured by observation of the phase offset plot in the region of 
interest. 

The system complexity of a synchronizer is determined by two main elements, operating 
sampling rate and algorithm complexity. The combination of sampling rate and algorithm 
complexity determines the total computational requirement of the synchronization scheme. A 
synchronizer that requires a higher sampling rate will often require a more expensive ADC. 
Additionally, synchronizers with greater algorithm complexity will often require faster DSP. 
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4.2 Methods of Performance Evaluation 

The performance evaluation of the robust synchronization candidates is performed using 
Matlab simulations. Each of the synchronizers is modeled as a separate Matlab program. 
Additionally, each synchronizer requires an incoming baseband symbol stream. Matlab based 
simulation platform provides the baseband symbol stream. The simulation platform performs the 
operations of a QPSK modulator, a band-limited AWGN channel, and a demodulator fi-ont-end. 
Figure 4.2 shows the block diagram of the simulation platform. Note that all of the synchronizers 
operate on one or both of the I and Q baseband signals produced by the simulation platform. 

Figure 4.2: Simulation Platform Block Diagram 

Several small Matlab scripts (Appendix A) are used to control the simulation of the 
synchronizers in order to evaluate their performance. The offset control script iterates through 
several initial phase offsets and captures the phase error signal from the synchronizer model being 
studied. The offset control script keeps a constant SNR over the entire range of phase offsets. The 
resulting phase error signals are used to determine the synchronizer's initial phase offset locking 
range as well as its convergence time. The SNR control script iterates through a range of SNR and 
captures the phase error signal from the synchronizer model being studied. The mean-square phase 
error at each SNR is calculated from the resulting phase error signals. The SNR control script also 
contains a larger loop that performs the SNR iterations several times so that an average mean- 
square phase error can be calculated. The frequency-offset script iterates through a range of 
frequency offsets and captures the phase error signal from the synchronizer. The phase error 
signals are then used in the initial and midstream frequency offset performance evaluation. 

4.3 Sliding Window Synchronizer Performance 

4.3.1 Convergence Time 

The SWS convergence time is fairly long. Many symbols are required in order for the 
incremental phase differences between the incoming symbol stream and the symbol strobe to be 
reduced to less than a one tap phase error. The high-sample-rate SWS can take up to 350 symbol 
periods to achieve less-than-one-tap phase error. Convergence plots of the high-sample-rate SWS 
are shown in Figure 4.3. The offsets range from zero to one symbol periods in steps of 0.2 symbol 
periods. All of the convergence plots in Figure 4.3 are performed at an SNR ( E n , )  of 10 dB. The 
worst case offset, one half of the symbol period, for the low-sample-rate SWS requires over 400 
symbol periods to achieve less than one tap phase error at a SNR of 10 dB. A plot of the 
convergence time of the low-sample-rate SWS is shown in Figure 4.4. The initial offsets are from 
zero to one symbol periods in steps of 0.2 symbol periods. 
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Figure 4.3: High-samplerate SWS Convergence Plot 

SWS 4 TaD Phase Error 

E 
% 0.3 
c .- 
S m 
2 0.25 
2 
b 

0.2 I c a 
0.1 5 

0.1 

0.05 

n 
"0 200 400 600 800 1000 1200 1400 1600 1800 2000 

Symbol Count 

Figure 4.4: Low-samplerate SWS Convergence Plot 
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There is no convergence to zero phase error in either the high or the low-sample-rate 
versions of the SWS. This may be problematic for systems that use non-square pulse shapes. It 
may also introduce some ISI. It seems that the convergence of the SWS in single-carrier systems is 
rather poor. 

4.3.2 Mean-Square Phase Error 

The mean-square phase error performance of the SWS was not expected to be 
extraordinary. Since the SWS was designed for OFDM systems, it is not surprising that its 
performance in single-carrier is lacking. In our evaluation, the high-sample-rate version posts a 
lowest mean-square phase error of 6 . 7 ~ 1 0  T at 10 dB and a worst-case mean-square phase error 
of 1 .4~10-  T at 3 dB. A plot of mean-square phase error over a range of S N R  fiom 0 dB to 10 dB 
is shown in Figure 4.5. The low-sample-rate version of the SWS performs better than the high- 
sample-rate version. AN explanation for this phenomenon is that the low and high-sample-rate 
versions both use the same length SWA. This gives the low-sample-rate version an advantage in 
terms of the number of symbols over which its phase detector characteristic operates compared to 
the high-sample-rate version. Its lowest mean-s uare phase error is 1 . 3 ~ 1 0  T at 10 dB, but its 
worst-case mean-square phase error is 5 . 2 ~ 1 0  T2 at 3 dB. Figure 4.6 shows the mean-square 
phase error for the low-sample-rate SWS over a range of S N R  fiom 0 dB to 10 dB. 
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Figure 4.5: High-SampleRate SWS Mean-Square Phase Error Plot 
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Figure 4.6: Low-SampleRate SWS Mean-Square Phase Error Plot 

4.3.3 Lowest S N R  for Locking 

The SWS was expected to perform at S N R  ( E n , )  as low as 0 dB as published results have 
previously shown [3]. However, those expectations are in OFDM systems. The actual simulation 
results show a lowest S N R  for locking to be 3 dB in single-carrier systems. A problem that plagues 
the SWS in single-carrier systems is its inability to converge to zero phase error. This can clearly 
be seen for the high-sample-rate SWS in Figure 4.7. The initial offset for these plots is 0.3 symbol 
periods. 

The low-sample-rate version of the SWS also is unable to achieve zero phase error. It 
seems to have a more prominent threshold at its lowest S N R  for locking than does the high- 
sample-rate version. In Figure 4.8, note that the low-sample-rate SWS performs in a typical 
fashion at a S N R  of 3 dB. However, at a S N R  of 2 dB the low-sample-rate SWS is unable to 
operate correctly. The offset for these plots is 0.3 symbol periods. 

4.3.4 Frequency Offset Performance 

SWS is not able to perform over the entire range of frequency offsets from -100 to +lo0 
ppm . The ability to maintain synchronization lock is lost at frequency offsets greater in magnitude 
than 50 ppm . Figure 4.9 shows the loss of synchronization lock for the high-sample-rate SWS. 
This plot is performed with an offset of 0.3 symbol periods and at a S N R  of 10 dB. The mean- 
square phase error performance of the SWS over the same range of offsets is shown in Figure 4.10. 
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Figure 4.9: High-samplerate SWS Frequency Offset Convergence Plot 
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Since synchronization is lost, the equivalent reduction S N R  is approximately 8 dB for frequency 
offsets greater in magnitude than 50 ppm at an operational S N R  of 10 dB. The SWS is incapable 
of operating in communications systems with a frequency offset on the order of 100 ppm . 

The low-sample-rate SWS is also incapable of maintaining lock over the entire range of 
frequency offsets from -100 to +lo0 ppm . In fact, any frequency offset less than 10 ppm exhibits 
a residual phase offset and offsets greater than 10 ppm result in no synchronization. 

The SWS is unable to maintain lock in initial frequency offset simulations performed at its 
lowest S N R  for locking, 3 dB. Simulations attempted over the range of frequency offsets from - 
100 to +lo0 ppm resulted in a loss of synchronization in both the high-sample-rate and low- 
sample-rate versions. This indicates that the SWS will not be usable in real communications 
systems at its lowest S N R  for locking. 

4.3.5 Midstream Frequency Offset Performance 

SWS's performance in the event of a midstream frequency offset, like its initial frequency 
offset performance, is rather poor. Figure 4.11 shows the convergence plot of the high-sample-rate 
SWS with an initial offset of 0.3 symbol periods and a S N R  of 10 dB. The midstream frequency 
offset occurs at symbol 2000 and is an offset of -100 ppm . It can clearly be seen that the high- 
ample-rate SWS is unable to maintain synchronization following the midstream frequency offset. 
The high-sample-rate SWS requires the midstream frequency offset to be less than 50 ppm in 
order to maintain synchronization lock. This could either eliminate its practicality in some 
communications systems or require more accurate oscillators. 

frequency offset on the order of 100 ppm . Figure 4.12 shows the convergence plot of the low- 
sample-rate SWS. It can be seen that once the midstream frequency offset occurs at symbol 2000, 
the low-sample-rate SWS is unable to maintain synchronization. Midstream frequency offsets as 
low as 10 ppm also exhibited the same loss of synchronization. It can be concluded from these 
results that the low-sample-rate SWS will not perform in real communications systems that suffer 
from occasional midstream frequency offsets. 

The low-sample-rate version of the SWS is unable to maintain lock after a midstream 

4.3.5 Synchronizer Complexity 

SWS is the most complex scheme studied in this work. It has the longest simulation run- 
time and requires the greatest memory allocation for all of its SWA. These characteristics likely 
would prevent it from being used in practical systems. 
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Figure 4.12: Low-samplerate SWS Midstream Frequency Offset Convergence Plot 
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4.4 Modified Sliding Window Synchronizer Performance 

4.4.1 Convergence Time 

The convergence time of the MSWS is very short. Due to the coarse adjustment, the 
MSWS is able to achieve less than one tap phase error in ten symbol periods. Figure 4.13 shows 
the 10 dB S N R  convergence plot over the first fifteen symbol periods. The initial offsets are from 
zero to one symbol periods in steps of 0.2 symbol periods. Note that each of the individual 
convergence plots achieves less than one tap phase error within the first ten symbol periods. The 
MSWS does have a longer period where it asymptotically approaches zero phase error. The high- 
sample-rate version of the MSWS takes approximately 150 symbol periods at a S N R  of 10 dB to 
achieve near zero phase error. A plot of the convergence time of the high-sample-rate MSWS is 
shown in Figure 4.14. The initial offsets are from zero to one symbol periods in steps of 0.2 
symbol periods. The low-sample-rate version of the MSWS also requires about 150 symbol 
periods at a S N R  of 10 dB to achieve near zero phase error (Figure 4.15). The initial offsets are 
from zero to one symbol periods in steps of 0.2 symbol periods for this plot. 

4.4.2 Mean-Square Phase Error 

Simulation results show that the mean-square phase error of the MSWS is very low. The 
simulation results for S N R s  in the range of 0 dB to 10 dB for the high-sample-rate version are 
shown in Figure 4.16. The mean-square phase error is as low as 1.13 x 10- T at 10 dB and never 
greater than 9.19 x 10- T at 0 dB. Figure 4.17 shows the mean-square phase error for the low- 
sample-rate MSWS over a range of S N R s  from 0 dB to 10 dB. The mean-square phase error is as 
low as 1.48 x 10- T at 10 dB and never greater than 9.67 x 10- T at 0 dB. 

5 2  

5 2  

5 2  5 2  

4.4.3 Lowest S N R  for Locking 

The simulated performance shows that the MSWS can perform in an AWGN channel at 
S N R  as low as 0 dB. The high-sample-rate MSWS is able to operate as low as -3 dB ( E n , )  with a 
phase error which approaches zero. It is also able to maintain synchronization lock as low as -4 dB. 
However, at S N R s  less than -3 dB there is an increasing chance that synchronization lock will be 
lost. Figure 4.18 shows a phase error plot for the high-sample-rate MSWS at S N R s  of -3 dB and -5 
dB. The initial offset is set to 0.3 symbol periods. 

The low-sample-rate version of the MSWS also performs very well. It is able to operate at 
S N R s  as low as 0 dB. At S N R s  less than 0 dB it is unable to maintain synchronization lock. Figure 
4.19 shows the phase error plot for the low-sample-rate version of the MSWS at S N R s  of 0 dB and 
-3 dB. The initial offset is set to 0.3 symbol periods. 
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Figure 4.13: High-Sample Rate MSWS Convergence Plot First 15 Symbols 
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Figure 4.14: High-Sample Rate MSWS Convergence Plot 
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Figure 4.16: High-Sample Rate MSWS Mean-Square Phase Error Plot 
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Figure 4.18: High-Sample Rate MSWS Low SNR Plot 
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Figure 4.19: Low-Sample Rate MSWS Low SNR Plot 

4.4.4 Frequency Offset Performance 

The MSWS is able to achieve synchronization over the range of frequency offsets from - 
100 to +100 ppm. The phase error plots at a S N R  of 10 dB show only minor differences over the 
range of frequency offsets. Figure 4.20 shows the mean-square phase error performance of the 
high-sample-rate MSWS with respect to initial frequency offset. The simulations were performed 
at a S N R  of 10 dB. Comparing the worst case mean-square phase error of 3.89 x 10- T at +lo0 
ppm to Figure 4.16, indicates that an offset of +lo0 ppm is equivalent to a reduction in S N R  of 
6.25 dB. This indicates that the high-sample-rate MSWS will operate under frequency-offset 
conditions, but at a lower performance level. 

The mean-square phase error vs. frequency offset plot for the low-sample-rate version of 
the MSWS is shown in Figure 4.21. Like the high-sample-rate version, the frequency offsets were 
over the range of -100 to +100 ppm and with a S N R  of 10 dB. Comparing the worst-case mean- 
square phase error of 6.39 x 10 T at -100 ppm to Figure 4.17 indicates that this is equivalent to a 
reduction in S N R  of approximately 8.5 dB. If the frequency offset is kept within f50 ppm, the 
equivalent degradation in S N R  is less than 3 dB. This indicates that the performance of low- 
sample-rate version of the MSWS is highly influenced by frequency offsets and as a result, may 
require the use of more accurate oscillators than the other techniques. 

Simulations performed at the MSWS lowest S N R  for locking indicate that both high- and 
low-sample-rate versions can obtain and maintain synchronization lock despite frequency offsets 
ranging from -100 to +lo0 ppm. Figures 4.22 and 4.23 show plots of the initial frequency offset 
vs. mean-square phase error for the high- and low-sample-rate MSWS for different S N R s .  The 
plots indicate that there is substantial performance degradation at the lowest S N R  for locking. 
However, convergence plots showed that both high and low-sample-rate versions are able to 
acquire and maintain lock in these adverse conditions over the entire offset range. 
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Figure 4.21: Low-Sample Rate MSWS Frequency Offset vs. Mean-Square Phase Error Plot 
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4.4.5 Midstream Frequency Offset Performance 

The high-sample-rate MSWS is able to maintain synchronization in the event of a 
midstream frequency offset on the order of k100 ppm. Figure 4.24 shows the convergence plot of 
the high-sample-rate MSWS with an initial offset of 0.3 symbol periods and a S N R  of 10 dB. A 
midstream frequency offset of -100 ppm occurs at symbol 2000. The high-sample-rate MSWS is 
able to maintain synchronization despite the midstream frequency offset. However, the mean- 
s uare phase error jumps from 1.1 x 10- T , before the midstream frequency offset to 3.15 x 
T after the offset. Comparing this to the mean-square phase error plot in Figure 4.16, a midstream 
frequency offset of -100 ppm is approximately equivalent to a reduction in S N R  of 5.25 dB. 

The low-sample-rate version of the MSWS is not able to maintain a near zero phase error 
in the event of a midstream frequency offset on the order of f l O O  ppm. Figure 4.25 shows the 
convergence plot of the low-sample-rate MSWS. After the -100 ppm frequency offset occurs at 
symbol 2000, the low-sample-rate MSWS loses the ability to maintain near zero phase error. This 
phenomenon does not present itself at midstream frequency offsets less than f50  ppm. This 
indicates that the low-sample-rate MSWS may not be capable of operating in some 
communications systems and may need more accurate oscillators in both the transmitter and 
receiver. 

5 2  
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4.4.6 Synchronizer Complexity 

There are several primary contributors to the complexity of the MSWS including the use of 
a high-bandwidth, frequency-adjustable samplers, high-speed logic and bit manipulation in the 
sum-square calculation and control algorithm implementation, and employment of many data 
buffers in the creation of the time average approximation to the W(L,K) curve. It has the second 
longest simulation runtime of the synchronizers studied, faster only than the SWS. The system 
complexity is the biggest drawback, potentially limiting its applicability in low budget 
communications systems. Furthermore, the high-sample-rate of this scheme may preclude it from 
operation in high symbol rate systems. Additionally, the more stringent frequency offset 
requirements of the low-sample-rate MSWS will require more expensive oscillators in both the 
transmitter and receiver. 

4.5 Early-Late Gate Synchronizer Performance 

4.5.1 Convergence Time 

The Early-Late Gate Synchronizer has a relatively short convergence time. It is able to 
achieve less than one tap phase error in about 50 symbol periods at a S N R  of 10 dB. However, the 
ELGS is unable to obtain near zero phase error. The convergence time of the high-sample-rate 
ELGS is shown in Figure 4.26. The initial offsets range from zero to one symbol periods in steps 
of 0.2 symbol periods. The low-sample-rate ELGS convergence plot is shown in Figure 4.27. The 
initial offsets are also from zero to one symbol periods in steps of 0.2 symbol periods. 
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Figure 4.24: High-Sample Rate MSWS Midstream Frequency Offset Convergence Plot 
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Figure 4.25: Low-Sample Rate MSWS Midstream Frequency Offset Convergence Plot 
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4.5.2 Mean-Square Phase Error 

The mean-square phase error of the Early-Late Gate Synchronizer was not expected to be 
very good. The mean-square-phase error for the high-sample-rate ELGS is measured over a range 
of S N R s  from 0 dB to 10 dB (Figure 4.28). Note that the mean-square phase error is directly 
correlated with the S N R  at which it is operated. The lowest mean-square phase error is 1.5 x 104 
T2 at 10 dB and in the worst case it is 8.6 x 104 T2 at 3 dB. The low-sample-rate ELGS has a 
lowest mean-square phase error of 1.7 x 10- T at 10 dB and a worst case mean-square phase error 
of 4.2 x 10- T at 5 dB. Figure 4.29 shows the mean-square phase error of the low-sample-rate 
ELGS. Again, the strong correlation between the S N R  and the mean-square phase error is evident. 

3 2  

3 2  

4.5.3 Lowest S N R  for Locking 

The ELGS performs rather well in terms of lowest S N R  for locking. The high-sample-rate 
version of the ELGS is able to operate at S N R s  as low as 3 dB (En , ) .  The low-sample-rate 
version is able to obtain synchronization lock at S N R s  as low as 4 dB. However, neither version is 
able to achieve zero phase error. Figure 4.30 shows the phase error plot for the high-sample-rate 
ELGS. Figure 4.31 shows the phase error plot for the low-sample-rate ELGS. 

4.5.4 Frequency Offset Performance 

The ELGS is capable of maintaining synchronization lock over the range of frequency 
offsets of -100 to +lo0 ppm. Phase error plots at a S N R  of 10 dB show no discernible Werences 
over the range of offsets. Figure 4.32 shows the mean-square phase error performance of the high- 
sample-rate ELGS over the frequency offset range. The plot data is collected from simulations at 
S N R  of 10 dB. Comparing the worst case mean-square phase error of 1.67 x 10 T at -100 ppm to 
Figure 4.28 shows that an offset of -100 ppm is equivalent to a reduction in S N R  of less than 0.1 
dB. This indicates that the high-sample-rate ELGS will perform well under frequency offset 
conditions. 

The low-sample-rate version of the ELGS also performs well in the event of a frequency 
offset. Over the range of frequency offsets from -100 to +lo0 PPM at a S N R  of 10 dB, the phase 
error plots of the low-sample-rate ELGS are almost identical. Figure 4.33 shows the mean-square 
phase error of the low-sample-rate ELGS over the frequency offset range. Note that the worst case 
mean-square-phase error for the low-sample-rate ELGS is 1.81 x 10- T at a frequency offset of - 
100 ppm. Comparing this to Figure 4.29 it is clear that a frequency offset of -100 ppm is 
equivalent to a reduction in S N R  of less than 0.1 dB. 

At the lowest S N R  for locking, 3 dB, the high-sample-rate ELGS is able to obtain and 
maintain lock at frequency offsets ranging from -100 to +lo0 ppm. The low-sample-rate version is 
also able to operate at its lowest S N R  for locking, 4 dB, with frequency offsets of -100 to +lo0 
ppm As a result, the ELGS should be capable of operating in real systems at S N R s  as low as 3 dB 
and 4 dB, with initial frequency offsets on the order of f l O O  ppm. 

4 2  
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Figure 4.26: High-Sample Rate ELGS Convergence Plot 
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Figure 4.27: Low-Sample Rate ELGS Convergence Plot 
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Figure 4.30: High-Sample Rate ELGS Low SNR Plot 
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Figure 4.31: Low-Sample Rate ELGS Low SNR Plot 
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4.5.5 Midstream Frequency Offset Performance 

The high-sample-rate ELGS is able to maintain synchronization despite midstream 
frequency offsets on the order of k100 ppm. Figure 4.34 shows the convergence plot of the high- 
sample-rate ELGS with an initial offset of 0.3 symbol periods and a S N R  of 10 dB. There is no 
visual difference in the convergence prior to, or following, the -100 ppm frequency offset at 
symbol 2000. The mean-square phase error prior to the frequency offset is 1.55 x 10 T and 1.39 
x 10 T following the offset. 

The low-sample-rate version of the ELGS is also able to maintain synchronization in the 
event of a midstream frequency offset on the order of k100 ppm. Figure 4.35 shows the 
convergence plot of the low-sample-rate ELGS with an initial phase offset of 0.3 symbol periods 
and a S N R  of 10 dB. Like the high-sample-rate version, the low-sample-rate ELGS exhibits no 
visual difference in the convergence plot prior to, or following, the midstream frequency offset of - 
100 ppm. The mean-square phase error prior to the frequency offset is 1.7 x 10- T and 1.6 x 103 
T2 after the offset. This indicates that the low-sample-rate version of the ELGS will be able to 
operate in most communication systems, provided that they do not require a mean-square phase 
error on the order of 1.0 x 10- T or less. 

4 2  

4 2  

3 2  

3 2  

4.5.6 Synchronizer Complexity 

The ELGS is a fairly simple scheme. It has the second fastest runtime, slower only than the 
GZCD. The simplicity of the ELGS enables it to fit a wide range of system budgets. However, its 
high-sample rate may limit it to low speed communication systems. 

4.6 Gardner Zero-Crossing Detector Performance 

4.6.1 Convergence Time 

The GZCD has a fairly fast convergence time. With a S N R  of 10 dB, the GZCD is able to 
converge in less than 30 symbol periods (Figure 3.36). The initial offsets range from zero to one 
symbol period in steps of 0.2 symbol periods for this plot. Note that following its fast convergence, 
the GZCD is unable to achieve zero phase error (Figure 3.36). 

4.6.2 Mean-Square Phase Error 

The mean-square phase error of GZCD is measured over the range of S N R s  from 0 dB to 
10 dB. In this range it is able to achieve a mean-square phase error as low as 1.3 x 10 T at 10 
dB. The maximum mean-square phase error produced in the GZCD operational range is 8.7 x 104 
T2 at a S N R  of 3 dB. The plot of mean-square phase error versus S N R  for the GZCD is shown in 
Figure 3.37. Note the strong correlation between the S N R  and mean-square phase error. 

4 2  

4.6.3 Lowest S N R  for Locking 

The GZCD is able to operate at S N R s  as low as 3 dB ( E n , ) .  At S N R s  less than 3 dB, the 
GZCD shows a phase error greater than 0.125 symbol periods. Figure4.38 shows the lowest S N R  
for locking for the GZCD. 
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4.6.4 Frequency Offset Performance 

The GZCD is able to maintain synchronization over a range of frequency offsets from -100 
to +lo0 ppm. The phase error plots of the GZCD over this range of frequency offsets are almost 
indiscernible from one another. The mean-square phase error plot of the GZCD over the range of 
frequency offsets is shown in Figwe 4.39. At a S N R  of 10 dB, the worst-case mean-square phase 
error, 1.403 x 10 T , occws at -100 ppm. Comparing this value with the results in Figure 4.37, 
one can see that a frequency offset of -100 ppm is equivalent to a reduction in S N R  of less than 0.1 
dB. This indicates that a frequency offset over the range of -100 to +lo0 ppm will not have a 
significant effect on the performance of the GZCD. 

Simulations performed at the lowest S N R  for locking, 3 dB, indicate that the GZCD is able 
to obtain and maintain synchronization despite frequency offsets ranging from -100 to +lo0 ppm. 
Convergence plots show no loss of synchronization as well as a quick acquisition despite these 
adverse conditions. As a result, the GZCD should be suitable for real communications systems 
which have a S N R  of 3 dB or greater. 

4 2  

4.6.5 Midstream Frequency Performance 

The midstream frequency offset convergence plot of the GZCD is shown in Figure 4.40. 
The initial phase offset is 0.3 symbol periods, the S N R  is 10 dB, and the -100 ppm frequency 
offset occws at symbol 2000. There is no visible dif€erence in the convergence of the GZCD prior 
to, or following, the frequency offset. The mean-square phase error before the offset is 1.1 x lo4 
T2 and 1.34 x 10 T after the offset. This indicates that midstream frequency offsets on the order 
of f l O O  ppm have only a minor effect on the performance of the GZCD. 

4 2  

4.6.6 Synchronizer Complexity 

The GZCD is the least complex of all of the schemes studied in this analysis. Its simulation 
runtime is the fastest, and it operates at the lowest sample rate. Given these advantages, the GZCD 
is applicable to a wide range of communication systems. 
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